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1. INTRODUCTION

The forced vibration of an n-degree-of-freedom linear second order system is
represented by

MxK (t)#CxR (t)#Kx(t)"f (t), x(0)"h
n
, xR (0)"h

n
(1)

for all t*0. In equation (1),

x(t)"[x
1
(t) x

2
(t)2x

n
(t)]T3Rn (2)

denotes the vector of displacements (lT denotes the transpose of a vector l); the
mass matrix M, the damping matrix C, and the sti!ness matrix K belong to Rn]n

and are symmetric and positive de"nite; x(0)3Rn and xR (0)3Rn are the vectors of
initial displacements and velocities, respectively; h

n
denotes the zero vector in Rn;

the vector f (t)3Rn, t*0, denotes the forcing vector. It is assumed that f3¸n
2
(R

`
),

that is, its norm, denoted by E f E
2
, satis"es

E f E
2
:" CP

=

0

f T(q) f (q) dqD
1@2

(R. (3)

This assumption is readily satis"ed for excitations encountered in practice, for
instance, seismic and transient loadings.

In this note, the goal is to derive an a priori upper bound on the sizes (norms) of
displacements of system (1) without solving it (numerically); more precisely, to
derive a single upper bound on the ¸

=
-norm of the displacement x

i
( )), de"ned by

Ex
i
E
=
:"max

t*0

Dx
i
(t) D (4)

for all i"1, 2,2 , n.
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In recent years, researchers have derived bounds on the sizes of displacements
and velocities of free or forced vibratory systems; see, e.g., references [1; 2; 3, p. 136;
4}8; 9, pp. 177}178; 10]. Such bounds can be used in the design and analysis of
systems. Bounds on the sizes of displacements of system (1) are useful when (1) they
are easily computable; (2) they are tight. If the bounds are not easily computable,
then one might as well solve system (1) (numerically) in order to obtain the exact
(very accurate) values for the displacement peaks. If, on the other hand, the bounds
are easily computable, but are conservatively large, then they furnish no useful
information to be used in the system design and analysis. It appears that the two
requirements of ease of computation and tightness of the upper bounds oppose
each other: the less (more, respectively) computational e!ort, the more (less)
conservative bounds on the sizes of displacements. Despite this fact, one should
attempt to derive easy to compute and tight bounds; in particular, bounds on the
norms of responses of forced systems, which are not easily computable and are
usually conservative.

2. UPPER BOUNDS ON DISPLACEMENTS

In this section, two upper bounds on the norms of displacements of system (1) are
obtained by two di!erent approaches. In the following, j

min
(H) and j

max
(H) are

used to denote the minimum and the maximum eigenvalues of a symmetric matrix
H, respectively. A weighted norm for the forcing vector f ( ) ) applied to system (1) is
de"ned as

E f E
2,H

:"CP
=

0

f T(q)H f (q) dqD
1@2

(5)

where H is a symmetric and positive-de"nite matrix. By the de"nition of Rayleigh's
quotient (see, e.g., references [11, pp. 237}243; 12, pp. 176}181]) and inequality (3),
it follows that E f E

2,H
)[j

max
(H)]1@2 E f E

2
(R.

2.1. APPROACH 1

An upper bound is obtained by directly using system (1), which is the system
representation in the physical co-ordinates.

Theorem 2.1. Consider system (1) with f ( ) ) satisfying inequality (3). ¹he ¸
=
-norm of

the displacement x
i
( ) ) satis,es

Ex
i
E
=
)

E f E
2,C~1

[2 j
min

(K)]1@2
(6)

for all i"1, 2,2 , n.
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Proof. For system (1) consider the energy function

E(t)"
1
2

xR T(t)MxR (t)#
1
2
xT(t)Kx(t) (7)

for all t*0, where E(0)"0. The derivative of E( ) ) along the solution of system (1)
satis"es

EQ (t)"!xR T(t)CxR (t)#xR T(t) f (t) (8)

for all t*0. Since the matrix C is positive de"nite, equation (8) can be written as

EQ (t)"!xR T(t)CxR (t)#xR T(t)C1@2C~1@2 f (t) (9)

for all t*0, where C1@2C1@2"C. By inequality (A1), established in Appendix A,

xR T(t)C1@2 C~1@2 f (t))xR T(t)CxR (t)#
1
4

f T (t)C~1 f (t) (10)

for all t*0. Using inequality (10) in equation (9), it is concluded that

EQ (t))
1
4

f T (t)C~1 f (t) (11)

for all t*0. Having E(0)"0 and using a theorem from the theory of di!erential
inequalities (see, e.g., references [13, p. 2; 14, p. 3]), it is concluded that E( ) ) in
inequality (11) satis"es

E(t))
1
4 P

t

0

f T (q) C~1f (q) dq)
E f E2

2,C~1

4
(12)

for all t*0. Thus, it follows from inequality (12) that

xT (t)Kx(t)/2)E f E2
2,C~1/4 (13)

for all t*0. Using the de"nition of Rayleigh's quotient in the left-hand side of
inequality (13), it is concluded that

j
min

(K)xT(t)x(t))E f E2
2,C~1/2 (14)
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for all t*0. Finally, using xT ( ) )x ( ) ) from inequality (14) in

Ex
i
E
=
"max

t*0

Dx
i
(t) D)max

t*0

[xT(t)x(t)]1@2 (15)

the upper bound in inequality (6) is established. K

Next, a di!erent upper bound is obtained,

2.2. APPROACH 2

An upper bound is obtained by using the following representation of system (1):

MK~1MxK (t)#MK~1CxR (t)#Mx(t)"MK~1 f (t), x(0)"h
n
, xR (0)"h

n
(16)

for all t*0.

Theorem 2.2. Consider system (1) with f ( ) ) satisfying inequality (3). ¸et the matrix
S:"CM~1K#KM~1C be positive de,nite. ¹he ¸

=
-norm of the displacement x

i
( ) )

satis,es

Ex
i
E
=
)

E f E
2,S~1

[j
min

(M)]1@2
(17)

for all i"1, 2,2 , n.

Proof. For system (16) consider the energy function

<(t)"
1
2
xR T(t)MK~1MxR (t)#

1
2
xT(t)Mx(t) (18)

for all t*0, where <(0)"0. The derivative of <( ) ) along the solution of system
(16) satis"es

<Q (t)"!xR T(t)MK~1CxR (t)#xR T(t)MK~1 f (t) (19)

for all t*0. Since MK~1C is not a symmetric matrix, its asymmetric part vanishes
in equation (19). Thus,

<Q (t)"!

1
2

xR T(t) (MK~1C#CK~1M)xR (t)#xR T(t)MK~1 f (t) (20)

for all t*0. Clearly,

MK~1C#CK~1M"MK~1(CM~1K#KM~1C)K~1M. (21)
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From equation (21), it is concluded that the matrix MK~1C#CK~1M is positive
de"nite due to the fact that S"CM~1K#KM~1C is a positive-de"nite matrix
and M and K are non-singular matrices. Thus, equation (20) can be written as

<Q (t)"!

1
2

xR T(t) (MK~1C#CK~1M)xR (t)

#xR T(t) [(MK~1C#CK~1M)/2]1@2

][(MK~1C#CK~1M)/2]~1@2MK~1 f (t) (22)

for all t*0. Applying inequality (A1) in Appendix A to the second term on the
right-hand side of equation (22), it is concluded that

<Q (t))
1
2

f T(t)K~1M(MK~1C#CK~1M)~1MK~1 f (t) (23)

for all t*0. Using equation (21) in inequality (23), it is concluded that

<Q (t))
1
2

f T (t) (CM~1K#KM~1C)~1 f (t)"
1
2

f T(t)S~1 f (t) (24)

for all t*0. Having <(0)"0 and using a theorem from the theory of di!erential
inequalities, it is concluded that <( ) ) in inequality (24) satis"es

<(t))
1
2 P

t

0

f T(q)S~1 f (q) dq)
E f E2

2,S~1

2
(25)

for all t*0. Thus, it follows from inequality (25) that

xT(t)Mx(t)/2)E f E2
2,S~1/2 (26)

for all t*0. Using the de"nition of Rayleigh's quotient on the left-hand side of
inequality (26), it is concluded that

j
min

(M) xT(t)x (t))E f E2
2,S~1 (27)

for all t*0. Finally, following the last step in the proof of Theorem 2.1, the upper
bound in inequality (17) is established. K

Remark. In Theorem 2.2, the assumption that S"CM~1K#KM~1C is
a positive-de"nite matrix is not a restrictive assumption. The reason is as follows. In
reference [8], it is shown that if system (1) is classically damped, i.e., if
CM~1K"KM~1C, then the matrix S is positive de"nite. However, it is further
shown that when S is positive de"nite, it is not necessarily true that
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CM~1K"KM~1C. Thus, the class of classically damped systems is a subclass of
the systems for which S is positive de"nite. It happens that for systems encountered
in practise, the matrix S is usually positive de"nite, where as the identity
CM~1K"KM~1C rarely holds. K

3. EXAMPLE

In this section, an example is given to study the bounds obtained in this note.
Consider the system in Figure 1 and let m

i
"1 and k

i
"10 for all i"1, 2, 3, and

c
1
"0)66, c

2
"0)6, c

3
"0)66.

Furthermore, let the system be excited by the force

f (t)"G
[0)2 0)2 0)2]T sin

9n
20

t, 0)t)20,

h
3
, 20(t .

(28)

The vibration of this system is represented by

1 0 0

0 1 0

0 0 1

xK
1
(t)

xK
2
(t)

xK
3
(t)

#

1)26 !0)6 0

!0)6 1)26 !0)66

0 !0)66 0)66

xR
1
(t)

xR
2
(t)

xR
3
(t)

#

20 !10 0

!10 20 !10

0 !10 10

x
1
(t)

x
2
(t)

x
3
(t)

"

0)2

0)2

0)2

sin
9n
20

t (29)

for all 0)t)20, where the right-hand side of equation (29) is zero for all t'20.
The vectors of initial displacements and velocities of system (29) are zero.
Figure 1. The system represented by equation (29) is a three-degrees-of-freedom system excited by
forces f

1
( ) ), f

2
( ) ), and f

3
( ) ) .
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Having the coe$cient matrices M, C, and K of system (29) identi"ed, by
straightforward computation, it is obtained that

E f E
2,C~1"CP

20

0

f T(q)C~1 f (q) dqD
1@2

"C0)8727 P
20

0

sin2
9n
20

qdqD
1@2

"2)9542

(30a)

j
min

(K)"1)9806. (30b)

Therefore, by inequality (6), it follows that

Ex
1
E
=
)1)4843, Ex

2
E
=
)1)4843, Ex

3
E
=
)1)4843. (31)

It is next veri"ed that the matrix S"CM~1K#KM~1C is positive de"nite. Thus,
the upper bound in inequality (17) can be computed. By straightforward
computation, it is obtained that

E f E
2,S~1"2)2026. (32)

Therefore, by inequality (17), it follows that

Ex
1
E
=
)1)4841, Ex

2
E
=
)1)4841, Ex

3
E
=
)1)4841. (33)
Figure 2. Responses of system (29).
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Responses of system (29) are obtained by the numerical integration and are
plotted in Figure 2. From this "gure, it follows that

Ex
1
E
=
"0)9814, Ex

2
E
=
"0)7870, Ex

3
E
=
"0)4366. (34)

Obtaining upper bounds on the norms of responses of forced systems is usually
a di$cult task. Moreover, most of the available bounds are conservative.
Comparing the exact value of Ex

1
E
=

in equation (34) and the upper bounds
corresponding to it in inequalities (31) and (33), it is concluded that the bounds are
not very conservative. The upper bounds in inequalities (31) and (33) are close
to each other; however, this is not always the case. There can be systems for which
the bound obtained by inequality (6) is much di!erent from that obtained by
inequality (17).

4. CONCLUSIONS

In this note, the forced vibration of n-degree-of-freedom linear second order
systems is considered. Two easy-to-compute upper bounds on the norms of
displacements of such systems are derived. The upper bounds are given by
inequalities (6) and (17). Each bound is a single upper bound on the norms of all
displacements of system (1) and hence is computed only once.
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APPENDIX A: USEFUL INEQUALITY

The following useful inequality, although is available in the literature, is
established here for completeness.

Lemma A.1. For the vectors l
1

and l
2

in Rn, the following inequality holds:

lT
1
l
2
)lT

1
l
1
#lT

2
l
2
/4. (A1)

Proof. Clearly,

(l
1
!l

2
/2)T (l

1
!l

2
/2)*0. (A2)

By expanding the right-hand side of inequality (A2), inequality (A1) follows. K
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